Simulation of polymer translocation through protein channels.
نویسندگان
چکیده
A modeling algorithm is presented to compute simultaneously polymer conformations and ionic current, as single polymer molecules undergo translocation through protein channels. The method is based on a combination of Langevin dynamics for coarse-grained models of polymers and the Poisson-Nernst-Planck formalism for ionic current. For the illustrative example of ssDNA passing through the alpha-hemolysin pore, vivid details of conformational fluctuations of the polymer inside the vestibule and beta-barrel compartments of the protein pore, and their consequent effects on the translocation time and extent of blocked ionic current are presented. In addition to yielding insights into several experimentally reported puzzles, our simulations offer experimental strategies to sequence polymers more efficiently.
منابع مشابه
Driven polymer translocation through a cylindrical nanochannel: Interplay between the channel length and the chain length
Using analytical techniques and Langevin dynamics simulations, we investigate the dynamics of polymer translocation through a nanochannel embedded in two dimensions under an applied external field. We examine the translocation time for various ratio of the channel length L to the polymer length N . For short channels L ≪ N , the translocation time τ ∼ N under weak driving force F , while τ ∼ FL...
متن کاملHow polymers translocate through pores: memory is important.
Many biological processes, such as DNA and RNA transport across nuclear pores, injections of viral DNA, gene swapping, and protein transport across cellular membranes, involve the motion of polymer molecules across narrow channels (1). Translocation through nanopores is also one of the most important and powerful methods for analyzing properties of single biopolymer molecules and for investigat...
متن کاملThrough the eye of the needle: recent advances in understanding biopolymer translocation.
In recent years polymer translocation, i.e., transport of polymeric molecules through nanometer-sized pores and channels embedded in membranes, has witnessed strong advances. It is now possible to observe single-molecule polymer dynamics during the motion through channels with unprecedented spatial and temporal resolution. These striking experimental studies have stimulated many theoretical dev...
متن کاملCoarse-grained simulation of polymer translocation through an artificial nanopore
The translocation of a macromolecule through a nanometer-sized pore is an interesting process with important applications in the development of biosensors for single–molecule analysis and in drug delivery and gene therapy. We have carried out a molecular dynamics simulation study of electrophoretic translocation of a charged polymer through an artificial nanopore to explore the feasibility of s...
متن کاملDynamics of polynucleotide transport through nanometre-scale pores
The transport of biopolymers through large membrane channels is a ubiquitous process in biology. It is central to processes such as gene transfer by transduction and RNA transport through nuclear pore complexes. The transport of polymers through nanoscopic channels is also of interest to physicists and chemists studying the effects of steric, hydrodynamic, and electrostatic interactions between...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 14 شماره
صفحات -
تاریخ انتشار 2006